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IMPORTANT NOTICES

1. Do not open this booklet before the start of the examination.

2. Choose and answer the questions {rom three fields out of four.

3. Three answer sheets are given. Use each sheet to answer the problems of different

field.
Fill the field name and your examinee number in the answer sheet.
5. Do not carry out this booklet nor the answer sheets.
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Fluid Dynamics (Morning)

Consider the turbulent boundary layer formed on an object in a two-dimensional steady incompressible
viscous flow with the constant viscosity & and the constant density p. Use the coordinates where the
x coordinate is along the surface of the object and the y coordinate is normal to it, and the origin of
y coordinate is on the surface of the object. u is the velocity component in the z direction and v
is the one in the y direction. U is the velocity component in the z direction at the boundary layer
edge. § is the boundary layer thickness. 7 is the shearing stress acting on the fluids. 7, is the
shearing stress at the surface of the object. The boundary layer equation is expressed as eq. (1)

ou Uau :Ud_U_'_lg:

ox dy dz  pdy

The displacement thickness & and the momentum thickness 0 are defined as eqs. (2). They are used

M

as parameters that express the boundary layer thickness. The shape factor H is defined as eq. (3). Then

it is known eq. (4) holds.

. 5 u sy U
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Here, we consider the case when U is the function of only z . We discuss the turbulent boundary layer

developing along z . Answer the following questions.

Question 1
Past research confirms experimentally that 7 of the turbulent boundary layer is expressed by eq. (5).
i
= = AR, 5)
pU*
where A is the function of H, R isthe Reynolds number defined by eq. (6) and p is the positive
constant
ue
Rt (6)
7
Show eq. (7) holds.
dz =k dll
—+——2—-B=0, 7
dat - idg %

where
2=0R?, B=A(l+p), k=(1+p)(2+H)—p.

(Continue on next page)



Question 2
We consider the case when the boundary layer characteristics does not change significantly towards the
downstream direction. We consider H does not change along z. By using eq. (7), show eq. (8)

holds. Using eq. (8), the changes in the momentum thickness along x can be obtained.

2U* = 2,(U,)" + B[ U'ds, ()

where the subscript 0 means the physical quantity atthe z position which is used as a reference point

on the object.

Question 3

In the previous question, we consider H does not change along z . In reality, H changes. To
consider this effect, we define the energy thickness 8" asone of the parameters indicating the boundary
layer thickness as shown in eq. (9)

’U,2

. Sy
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Derive the following relation shown in eq. (10), by multiplying = on both sides of eq. (1) and by

integrating it in the y direction from y =0 to y = h,where hisaconstantand y = h isoutside

the boundary layer.
i(Uaé’*):2U3E, (10)
dx ‘
where
|| (1
0 g 0y U
You may use the formula shown in eq. (12) assuming a and b are constants
boo d b
—_— = —_— 2
J. oo t@udy == | f@v)dy. (12)
Question 4

Derive eq. (13) which expresses the change in H along z by deleting the derivative of # with
respectto x using eqs. (4) and (10).
dH T, dH z dH dU

27—+ (G -2E)R" ——-(H - 1) —=———=0, 13
dz (pUZ ) e ( )UdG’da: G

where G is the dimensionless quantity defined as eq. (14) from the analogy of H .
G 9— (14)
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Solid Mechanics (Morning)

Consider a mast and two flexible solar array panels supported by
the mast in Figure 1. As shown in Figure 2, the mast is modeled
as a uniform cantilevered beam. and the two panels are
collectively modeled as single uniform string of which each end
is tied to each end of the beam. Then. no offset at each end
between the beam and the string exists in all three axes direction.
Bending deflection w(x) of the beam only in xz plane is
considered. As the coefficient of thermal expansion of the beam
a is larger than that of the string «, (a > ay > 0). the string
of its equilibrium length L is tied to the beam of its equilibrium
length L 4+ & at the normal temperature Ty so that the tension
of the string just becomes zero at the low temperature
T, (T, < Ty). Moreover, the cross-sectional area of the beam is
determined so that the compressive load of the beam at the high
temperature Ty (Ty > Ty) just comes up to Euler buckling
load as shown in Figure 3. The cross-sectional area, Young's
modulus and area moment of inertia of the beam are denoted by
A E and [, respectively. The cross-sectional area and Young's
modulus of the string are denoted by Ay and Ey, respectively.
The temperatures of the string and the beam are the same. And it
is assumed that the string has no bending stiffness and is not able
to transmit compressive load. Answer the following questions. If
necessary, use the following approximations.
Ezb, 1 oxally—T5) (1)

Question |

Solar array panel

Satellite
main body

Solar array panel

Fig.1 Mast and solar array panels

ZW
- I léBeam (AE, D
o= Shea
: String (Aq, Eq)

Fig.2 Beam and string model

W

Fig.3 Bending deflection
after Euler buckling

Assuming that the compressive load P yields the bending deflection w(x). derive the differential
equation of Euler buckling from the equilibrium of the loads on an infinitesimal element in the
bended beam. Include the figure of the infinitesimal element and the compressive load P, shearing
load Q and bending moment M working on it and the derivation procedure of the equation in the
answer. If necessary. use the following relation between M and w(x).

d*w
M = —'E]d—xz- (2)

Question 2

In case of using the bending deflection w expressed by x -coordinate shown in Figure 3 instead of x-
coordinate in order to obtain Euler buckling load of this beam. select the boundary conditions applied
to its tip and root from “Fixed™, “Simply Supported”. “Free” conditions, respectively. And describe
the reason of your selection.

(Continue on next page)



Question 3

Express the length & in the equilibrium length L 4+ § of the beam. using L, @, @y, Ty and Tj,.

Question 4
Express the magnitude of the compressive load P, generated in the beam at the high temperature

Ty, using @, ag, Ty, T; and so on.

A mast designed according to the aforementioned approach buckled in xz plane at the low temperature

T, on orbit. The results of investigation revealed the followings.

» The load of the mast at the low temperature T) came up to the compressive load P, obtained in
Question 4. ‘

*  Young’s modulus of a material X used in the solar array panels sharply changes around the
temperature T, (Ty > T, > Ty).

» In the design process, the change of Young’s modulus of the material X was overlooked, and it
was decided that the structural member made of the material X didn’t need to be reflected in the

string model of the solar array panels.

Instead of reflecting the structural member made of the material X in the existing string, it is newly
modeled as another uniform string of the equilibrium length L at the normal temperature Ty. This
string is added to the model in Figure 2, and its each end is tied to each end of the beam as well as the
existing string. Consequently, the modified model in Figure 2 consists of the beam and the two strings.
The cross-sectional area., Young’s modulus and coefficient of thermal expansion of the new string are
denoted by A4, E; and a;. Young’s modulus E; of the string is 1.0% of Young’s modulus E of the

beam at the normal temperature Ty.

Question 5
Obtain the ratio Ey/E at the low temperature T, using the following relations.
Ty =300 [K], T, =100 [K], Ty =400 [K]
Ey =0.1E, Ag =4, A, = 0014, a = 5a,, a; =9a,
And describe the reason why the mast buckled at the low temperature. including the reason why it
was decided in the design process that the structural member made of the material X didn’t need to

be reflected in the string model.



Aerospace System (Morning)

Consider the attitude control during ballistic flight for a rocket flying from the atmosphere to outer space
shown in Figure 1. The principal axes of the rocket coincide with the body coordinate axes. and the
moment of inertia about X, Y. and Z axes are Iy, Iy, and [,, (> 0, constant), the body angular
velocities are w,, wy.and w,, the control torquesare Ny, Ny.and N, inthe body coordinate system,
and the time is t. Assume the rocket to be a rigid body. Answer the following questions. If any

assumptions, variables, or constants are needed to answer. define them before using.

Question 1
Derive the equation of motion for the rotational motion (Euler equation) in the body coordinate system
for each of the X. Y. and Z axes using the moment of inertia, body angular velocities, and control

torques. Atmospheric effects are not considered here.

Question 2
Assuming that the angular velocities and the control torques are w,=w,=0, N, =N,=0, we consider the
spin control around the X axis when the rocket flies in the atmosphere. Assuming 1, = I,, = I, and
the angular velocity damping coefficient around the X axis due to atmospheric effects is ¢, (> 0.
constant), the equation of motion about the X axis is as follows.

Ixx% + ey = Ny (1)

The target value of the angular velocity w, is r, and the deviation is e =1 — w,.

1. Laplace transforms of N, w,,and r are N(s), W(s),and R(s). Express the transfer function
P(s) from N(s) to W(s) using ¢, and .

2. The feedback control according to Ny = k,e with proportional gain k,, is applied as the spin
control around the X axis. Draw a block diagram for this control system using N(s), W (s),
R(s). P(s).and k. And express the transfer function T'(s) from R(s) to W(s) using kp, cx
and [y,.

3. Find the condition of f,, for this feedback control system to be stable.

4. ltisassumed that k,, satisfies the stability condition of this control system. For this control system,
consider a rate following control by a step input r(t) = bu(t) as a target value (b : positive
constant, u(t) : unitstep input). When the control time is sufficiently long, obtain the steady-state

deviation e using the final value theorem.

(Continue on next page)



Question 3
After the completion of spin control, the rocket éscaped from the atmOsphére attime t = ty after flying
fora while. It is assumed that N, = N,, = N, = 0, and the following attitude motion (nutation motion) .
was observed after escaping the atmosphere.
' Wy = Wy 4
| w, = w, sin{n(t — t;)} gl i @
w; = w, cos{n(t —tg)}
ws(>0), w,(>0), n are all constants. Assume I}y, = Iz, = aﬁd I > I,,. Atmospheric effects are

not considered here. - 2

1. Express n by ws, I,and I, using the equation of motion derived in question 1.
2. Assume that the angle (nutation angle) between the angular momentum vector and the X-axisis &

shown in Figure 2. When the observed nutation motion is w, = 0.025w, and a = 0.2 rad, obtain

1/1,. The approximation tana =~ @ can be used.

Angular momentum
vector

Figure 1 : Figure 2



Propulsion Engineering (Morning)

The principle of the vibrating structure gyroscope is that when an angular velocity (2, around the z-
axis perpendicular to the paper surface is applied to the box as shown in Figure 1. the Coriolis force
acting on the two-degree-of-freedom oscillator in the x — y plane inside the box is detected. Here, the
coordinate system is fixed to the box, and its origin is at the center of the box. Angular velocity (2, can
be estimated from the amplitude of vibration generated in the orthogonal direction (y-axis) by driving
the oscillator with excitation force along the x-axis in Figure 1. Note that the oscillator can be

considered as a point mass.

Question | 7
Show the equations of motion of this oscillator. Here, use m, C;, k;, f; as the oscillator mass, damping
constant, spring constant, and excitation force, respectively. Note that i = x,y. and the same applies
hereinafter.

Question 2
Rewrite the equations of motion for Question 1 using the natural angular frequency w; of the undamped

system and the vibrational quality factor Q; = \/mk;/C;.

Do not use Cj, k; in subsequent answers, use w;, Q; instead.

Question 3
Consider the case where 2, = 0. In the x-axis equation of motion. find the condition of the Q, and

the angular frequency w when the x-axis vibration takes the maximum amplitude.

Question 4

Consider the case where an angular velocity (2, is applied. Assume that the oscillator is driven in the
x-axis direction with amplitude X, and frequency w = w, as x = X, sin(w,t) where t is time.
Solve the y-axis motion equation with f,, = 0. and find the relationship between the y-axis amplitude

Yy and (2, in this case.

Question 5

A gyroscope that directly measures the rotation angle without numerically integrating the angular
velocity is called an integrating gyroscope. A Foucault pendulum has a similar principle. Consider the
requirements and operations required when trying to realize something equivalent with the two-degree-
of-freedom oscillator as shown in Figure 1.

(Continue on next page)
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Figure | Two-degree-of-freedom oscillator in a box.
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