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Fluid Dynamics (Morning)

There is liquid, whose density is p, in a vessel placed in a uniform pressure p.,, as shown in Figure 1.
A uniform diameter slender pipe, whose length is L, is connected to the vessel horizontally. The height
of the liquid surface from the central axis of the pipe is h. Let the inlet of the pipe be “1,” and the end
of the pipe be “2.” The cock at the end of the pipe “2” is suddenly opened at the time ¢t = 0. Let the
velocity of the liquid efflux from “2” be q. The liquid is assumed inviscid and incompressible, and its
flow is assumed irrotational. The vessel volume is sufficiently large, and the change in the liquid surface
height associated with the liquid efflux is assumed negligible. Let the magnitude of the gravitational

acceleration be g.
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Figure 1

Question 1
If the flow is considered steady after a sufficiently long time has passed since the cock was opened,

obtain g, which is the velocity of liquid efflux at the end of the pipe “2.”

Question 2
The Euler’s equation of fluid is given by Eq. (1).
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where, ¥ is the velocity vector of the fluid, p is the pressure of the fluid, § is the gravitational

acceleration vector.

Let ¢ be the velocity potential. Derive Eq. (2) from Eq. (1). You may use the relation (/T : grad)/T =
A’

grad (—2—> —AxrotA that holds for arbitrary vector A.
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Question 3
Express the velocity of liquid efflux ¢ at the end of the pipe “2” in terms of t. Show that ¢ = g

when t — oo,

Question 4

Express the pressure at the inlet of the pipe p; in terms of t.




Solid Mechanics (Morning)

Question 1
Figure 1 represents a cantilevered honeycomb sandwich beam of width b and length L. The thickness
and the Young’s modulus of two face sheets are t and E. The height and the equivalent modulus of
elasticity in shear of the core made of honeycomb are h and G.. And the distributed load and the
bending displacement are p(x) and w(x). For the purpose of simplicity, the followings are assumed.

The core does not transmit the axial load in the x direction.

(h —t) isable to be approximately expressed as h, because h > t.

The bending rigidity of each face sheet is not considered.

The bending displacement w(x) in the face sheets and the core is identical regardless of z.
Figures 2 and 3 show the equilibrium of the loads and the deformation in an infinitesimal element of
length dx shown in Figure 1, respectively. The axial load and the displacement of the face sheets in the

x direction and the shearing load of the core are F(x), u(x), and Q(x).Answer the following questions.

1. Derive the equilibrium equations of the loads in the z direction and the moments in the core,

respectively, using Figure 2.

2. Derive the equation indicating the relation between F(x) and u(x) according to the Hooke’s law.

3. Derive the equation indicating the relation between u(x) and p(x).

4. Express the shearing strain y,, in the xz plane of the core, using Figure 3.

5. Derive the equation indicating the relation between u(x) and w(x).

6. Obtain w(x) in case that the concentrated load P in the +z direction is applied at x = L, instead
of applying p(x).

Question 2

A regular hexagonal honeycomb core shown in Figure 4 is applied to the sandwich beam in Question 1.
The honeycomb core and the face sheets are made of the same material of the Young’s modulus E, the
density p, and the Poisson’s ratio v. The side length and thickness of every honeycomb wall are a

and e. The equivalent modulus of elasticity in shear G, of the honeycomb core is expressed as

V3eG
Ge = 3a

where G is the modulus of elasticity in shear of a material used for the honeycomb wall.

M

The core height h is configured so that the bending displacement w{L) derived from the answer of
Question 1.6 becomes as small as possible on the condition that the mass per unit length u of the beam

is constant. Explain the increase or decrease of the optimal h as the beam length L increases, and
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derive the asymptotic value of the optimal h. No buckling needs to be considered. Use the following

equation (2), if necessary.
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Aerospace System (Morning)

Consider a system in which two carts are connected by springs and dampers shown in Figure 1. k; and
k, are spring constants, ¢; and ¢, are damping coefficients, M; and M, are masses of Cart 1 and
Cart 2, respectively. x;(t) and x,(t) are horizontal positions of Cart 1 and Cart 2 and each origin is
the position where both springs are equilibrium lengths. When a horizontal force f(t) acts on Cart 2,
the carts move. The position of the carts and the force acting on Cart 2 are both positive on the right
direction. The carts move smoothly in the horizontal direction on the floor, and the moment of inertia of
the wheels are not considered. The wall and floor do not move or deform. Answer the following
questions. If any assumptions, variables, or constants are needed to answer, define them before using

them.
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Question 1
We regard [x; x, %; X%,]7 as the state variable vector, and f(t) as the input variable. % is the time

derivative of x. Derive the state equation for this system.

Question 2
It is assumed that only the value of x,(t) can be directly observed using a potentiometer. Derive the

output equation for this system, where the output variable is y(t) = x4(t).

In the remaining, we consider ki = k; = ¢; = ¢, = M; = M, = 1. The state equation for this system

is as follows.

X1 0 0 1 01[M™ 0
al¥2] 1o o0 0 1]|x 0
alal |2 1 —2 1l|m|T|o|”

Xy 1 -1 1 -=1llx% 1

Question 3
Evaluate the observability of this system. The state variables, input variable, and output variable are
defined in the same way as in Questions 1 and 2.
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Question 4
Laplace transforms of f(t), x,(t), and x,(t) are F(s), X1(s), and X,(5s), respectively. Obtain the
transfer function G(s) from F(s) to X;(s).

Question 5

It is assumed that f(t) is generated by rotating the wheels of Cart 2 with a motor, and the input power
to the motor is w(t). Consider a proportional feedback control using the observation variable x,(t),
where the input power to the motor w(t) is used as the control variable. The target value of x1(t) is
given as 7(t), and its Laplace transform is R(s). The Laplace transform of w(t) is W(s), and the
transfer function from W(s) to F(s) is H(s). The proportional gain of the feedback control is K.
Draw a block diagram for this control system using K, G(s), H(s), R(s), W(s), F(s),and X;(s).

Question 6
Assuming H(s) = 5%1 in the feedback control system defined in Question 5, find the condition of K

for this system to be stable.




Propulsion Engineering (Morning)

Technologies to obtain energy from waste heat are attracting attention. Consider the performance of a
Stirling engine and a thermoelectric generator using a hot source (temperature Ty) and a cold sink

(temperature Ty), where Ty/Ty = 1.3.

Question 1

A Stirling engine is the one in which a gas sealed inside a cylinder is externally heated and cooled to
obtain work through changes in its volume (expansion by heating and compression by cooling), and
consists of isothermal compression, constant volume heating, isothermal expansion, and constant
volume cooling processes. Let the engine compression ratio be ¢ and assume that the gas sealed in
the cylinder is a perfect gas with mass m, gas constant R, and specific heat ratio 1.4. Answer the

following questions.

1. Draw a pressure-volume diagram and a temperature-entropy diagram.

2. Find the work done by the gas externally, the change in internal energy, and the energy obtained
from the hot source in the process of constant volume heating.

3. Find the work done by the gas externally, the change in internal energy, and the energy obtained
from the hot source in the process of isothermal expansion.

4. Calculate the theoretical thermal efficiency. Assume Ino = 1.5.

5. Calculate the theoretical thermal efficiency when the energy lost to the cold sink in the constant

volume cooling process can be reversibly used for heating in the constant volume heating process.

Question 2

A thermoelectric generator is a device in which two different electrically conductive materials are
placed in contact with one hot source and the other cold sink as shown in Figure 1 to generate an
electric potential difference V = &(Ty — TL) in the circuit, where the thermoelectric coefficient ¢ is
determined by the combination of the two materials. When a current / flows in the circuit, heat
absorption (conversion of heat flux to electrical power) of Q. = &ITy occurs in the hot source part.
Let the combined thermal conductivity of the two materials be A and answer the following questions.

Assume no temperature dependence for each property.

1. If the Joule heat r/? generated in the conductive materials (combined internal resistance r) is
evenly transferred to the hot source and cold sink parts, find the heat flux Q obtained from the hot
source.
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2. Calculate the available electric power 71,/ when a load resistor (resistance 1) is connected to
the circuit. Assume 7 = 0.40 X 1073 (Q, resistance ratio r./r = 1.5, £ = 0.40 x 1073 V/K, T, =
300 K and A =0.10 W/K

3. Calculate the theoretical efficiency (a fraction of heat flux from the hot source that is converted to
the electric power at the load resistor) of the above sub-question 2.

4. Calculate the resistance ratio 1, /r that maximizes the theoretical efficiency when 7, is variable.
Square roots need not be calculated.

5. Calculate the theoretical efficiency when the effects of Joule heat generated by the internal

resistance and heat conduction in the conductive materials are small and negligible.

n,

Figure I Schematic of a thermoelectric generator circuit.







