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Boundary layer suction is one of the techniques to control the flow around the aircraft. Here we think 

about the laminar boundary layer formed on semi-infinite two-dimensional flat plate placed at zero 

incidence against the free stream in an incompressible viscous steady flow. As shown in Figure 1, x-y 

coordinate system is defined and velocity components along x axis and y axis are expressed as U and V, 

respectively. Free stream velocity is U. There is no pressure gradient along the plate surface. All the 

plate surface has numerous microscale holes and uniform suction is achieved along whole region of 

plate surface at a constant velocity of V0 ( >0 ) with the help of a suction pump placed underneath the 

plate. Thus, at 0y   , 0U    and 0V V    are satisfied. Use  as the air density and  as the 

coefficient of kinematic viscosity, both of them are constant. In the following, subscript 0 denotes the 

plate surface ( 0y  ) and subscript f denotes x position far downstream from the leading-edge. Answer 

the following questions.  

 

 

 

 

 

Question 1  Consider the laminar boundary layer far downstream from the leading-edge of this semi-

infinite flat plate. 

 

1. Obtain the velocity distribution of 
f

U

U

 
 
 

 as a function of y using Equations (1) and (2). Let us 

consider the flow characteristics far downstream from the leading-edge are independent of x. 
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where P is pressure. 

2. Obtain the displacement thickness *
f  and the viscous shearing stress at the plate surface  f 0

 . 

The definition of displacement thickness is *

0
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Question 2  We think about obtaining an approximate velocity profile ( )
U

g
U




  of this boundary 

layer developed between the plate leading-edge and far downstream as a function of 
*

y


 . For this 

purpose, we give the velocity profile B( )F   of Blasius type laminar boundary layer formed over a flat 

plate without streamwise pressure gradient and without wall suction as a limiting form towards the plate 

leading-edge. We also give the velocity profile f ( )F    considered in Question 1 as a limiting form 

towards far downstream of the plate. By interpolating these two velocity profiles, we can obtain 

Equation (3) as a general form of velocity profile. 

 B f( ) (1 ) ( ) ( )
U

g K F KF
U

  


     ,  (3) 

where K is a parameter and is a function of x. 

When we denote 0( )g  and 0( )g  as the values of 
d

d

g


and 

2

2

d

d

g


 at 0  , obtain the relationship 

between 0( )g  and 0( )g  using Equation (2). 

 

Question 3  We assume K is independent of    and, differentiation of Equation (3) leads to the 

following equations which hold at the plate surface, where    d

d
  . 

 0 B 0 f 0( ) (1 )( ) ( )g K F K F       (4) 

 0 B 0 f 0( ) (1 )( ) ( )g K F K F        (5) 

1. Obtain f 0( )F   and f 0( )F  . 

2. Show 
*

0
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 using B 0( ) 0F   , where B 0( )a F  . 



In this problem, we consider a spherical symmetry problem of small deformation. Neglecting body 

forces, the equilibrium equation can be expressed as 

               
𝑑𝜎௥

𝑑𝑟
൅

2ሺ𝜎௥ െ 𝜎ఏሻ

𝑟
ൌ 0 ,                                        ∙∙∙∙∙∙∙ ሺ1ሻ 

and the strain-displacement relations are 

               𝜀௥ ൌ
𝑑𝑢
𝑑𝑟

 , 𝜀ఏ ൌ
𝑢
𝑟

 ,                                        ∙∙∙∙∙∙∙ ሺ2ሻ 

where 𝑟  is the distance from the center, 𝜎௥  and 𝜎ఏ  are the stresses in the radial and the 

circumferential directions, respectively, 𝜀௥ and 𝜀ఏ are the strains in the radial and the circumferential 

directions, respectively and 𝑢 is the displacement in the radial direction. 

 

Question 1  Obtain the compatibility equation which 𝜀௥ and 𝜀ఏ must satisfy. 

 

Question 2  In case of elastic body where Hooke’s law holds, it is known that the general solution of 

the stresses can be expressed by the following equations, 

               𝜎௥ ൌ 𝐴 ൅
2𝐵
𝑟ଷ  , 𝜎ఏ ൌ 𝐴 െ

𝐵
𝑟ଷ  ,                                ∙∙∙∙∙∙∙ ሺ3ሻ 

where 𝐴  and 𝐵  are arbitrary constants. It is obvious that these equations satisfy the equilibrium 

equation (1). Now, denoting Young’s modulus and Poisson’s ratio by 𝐸  and 𝜈 , respectively, write 

down Hooke's law for the spherical symmetry problem. Further, show that the equation (3) satisfies the 

compatibility equation obtained in Question 1. 

 

 

In the followings, consider an object with a spherical void of radius 𝑎. This object consists of an elastic-

perfectly plastic material which follows von Mises yield criterion with Young's modulus 𝐸  and 

Poisson’s ratio 𝜈  in elastic deformation and the yield stress 𝑌  in uniaxial tension. Let 𝑎  be 

sufficiently small compared with the size of the object. Here, “an elastic-perfectly plastic material which 

follows von Mises yield criterion” means that it yields when equivalent stress 𝜎ୣ୯ becomes 𝑌, and that 

𝜎ୣ୯ ൌ 𝑌  (constant value) in the plastically deformed region. Further, the equivalent stress 𝜎ୣ୯  is 

defined by the following equation with three principal stresses 𝜎ଵ, 𝜎ଶ and 𝜎ଷ. 

              𝜎ୣ୯ ൌ
1

√2
ඥሺ𝜎ଵ െ 𝜎ଶሻଶ ൅ ሺ𝜎ଶ െ 𝜎ଷሻଶ ൅ ሺ𝜎ଷ െ 𝜎ଵሻଶ  .                  ∙∙∙∙∙∙∙ ሺ4ሻ 

 

Question 3  Obtain the stress distribution during elastic deformation when internal pressure 𝑝 acts in 

the void. When increasing 𝑝 gradually, find the value of 𝑝 at the onset of yielding (let the value be 

𝑝ଢ଼). 
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Question 4  Letting 𝑟 ൌ 𝑐  be the elastic-plastic boundary when 𝑝 ൐ 𝑝ଢ଼ , the region 𝑎 ൑ 𝑟 ൑ 𝑐 

becomes the plastically deformed region and the region 𝑟 ൒ 𝑐 becomes the elastically deformed region. 

Find the value of 𝜎௥ at 𝑟 ൌ 𝑐. 

 

Question 5  When 𝑝 ൌ 𝑌 in Question 4, obtain 𝑐 and the stress distributions in the regions 𝑎 ൑ 𝑟 ൑

𝑐 and 𝑟 ൒ 𝑐. 

 

Question 6  Find the residual stress distribution when 𝑝  becomes zero from the condition 𝑝 ൌ 𝑌 . 

Here, you may ignore Bauschinger effect. 

 

Question 7  If this object is an elastic-perfectly plastic material following Tresca yield criterion, 

describe briefly the results of Questions 3 to 6 with the reason. 

 



Let us consider a deep space probe departing from a low Earth orbit (circular orbit) to escape from Earth using a 
thruster with low thrust, such as electric propulsion. When considering a mission to gradually increase the orbital 
radius from the low Earth orbit by firing the thruster continuously and, after multiple orbits, to escape from the 
Earth's gravity sphere (let this orbital sequence be called “spiral ascent”), answer the following questions. You can 
only consider the in-plane orbital motion. 
 
Question 1 When the orbital radius of the low earth orbit (circular orbit) is 𝑟 and the Earth's gravitational constant 
is 𝜇, find the orbital velocity 𝑣 and the orbital period 𝑇 of the circular orbit. Also show that the mechanical 
energy 𝐸 of the orbit is expressed as follows. 

𝐸 ൌ െ
ఓ

ଶ௥
. 

 
Question 2 The initial orbit is the low Earth orbit in question 1, and the low-thrust thruster is fired continuously 
with a constant acceleration 𝑎. The direction of the thrust is always controlled to be tangential to the orbit. The 
orbit change per orbital period is small (as seen in Figure 1) and follows the following equations, which are 
linearized around a circular orbit. 

𝑑ଶ𝑥ሺ𝑡ሻ

𝑑𝑡ଶ െ 2𝜔
𝑑𝑦ሺ𝑡ሻ

𝑑𝑡
െ 3𝜔ଶ𝑥ሺ𝑡ሻ ൌ 0 

𝑑ଶ𝑦ሺ𝑡ሻ

𝑑𝑡ଶ ൅ 2𝜔
𝑑𝑥ሺ𝑡ሻ

𝑑𝑡
ൌ 𝑎 

Here 𝑥ሺ𝑡ሻis the radial position, 𝑦ሺ𝑡ሻ is the tangential position, and 𝜔 is the angular velocity of the reference 
orbit (circular orbit), respectively. Assuming that the orbit of the spacecraft starting from the reference orbit at time 

𝑡 ൌ 0 (i.e., 
ௗ௫ሺ଴ሻ

ௗ௧
ൌ

ௗ௬ሺ଴ሻ

ௗ௧
ൌ 𝑥ሺ0ሻ ൌ 𝑦ሺ0ሻ ൌ 0), find the change in altitude after one orbital period 𝛿𝑟ሺ𝑇ሻ ൌ

𝑥ሺ𝑇ሻ െ 𝑥ሺ0ሻ. Also prove that the orbit after one orbital period becomes circular. 
 
Question 3 Let 𝛿𝑣 ൌ 𝑎𝑇 denote the cumulative acceleration per orbital period. Using the relationship between 
𝛿𝑟 and 𝛿𝑣 obtained from question 2, derive the total velocity change (ΔV) required for a spiral ascent from a 
circular orbit of radius 𝑟 to a circular orbit of radius 𝑅 (where 𝑅 ൐ 𝑟). 
 
Question 4 Let us compare an electric propulsion spacecraft which departs from a low Earth orbit to escape from 
the Earth's gravity sphere (𝑅 → ∞) by spiral ascent with a low-thrust thruster and a conventional rocket which 
escapes from the Earth’s gravity sphere by a single impulsive ΔV from the low Earth orbit with a high thrust rocket 
engine. Find the ratio of the ΔV required by the electric propulsion spacecraft to the ΔV required by the 
conventional rocket to escape from the Earth’s gravity sphere. 
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Figure 1 



As shown in Figure 1, an axisymmetric rigid object with a radius of 𝑎 and a mass of 𝑚 is 

kept stationary on a horizontal plane, and an impulse 𝑃 is applied horizontally at time 𝑡 ൌ 0 

to a point above the center O by ℎ. Here, the point of impact and the center of gravity of the 

object are in the same vertical plane, and the density of the object is uniform. 

 

Question 1. For each of the following cases, find h for this axisymmetric object to roll without 

slipping. 

 

1. When the axisymmetric object is a disk. 

2. When the axisymmetric object is a sphere. 

3. When the axisymmetric object is a thin spherical shell. 

 

In the following questions, let us consider arbitrary ℎ ሺ0 ൑ ℎ ൏ 𝑎ሻ. Here, the coefficient of 

dynamic friction between the axisymmetric object and the horizontal plane is 𝜇 , the 

gravitational acceleration is 𝑔, and the moment of inertia around the axis of rotation is 𝐼. 

 

Question 2. Find the moving velocity 𝑢ሺ𝑡ሻ of the center of gravity of the axisymmetric object 

and the rotational angular velocity 𝜔ሺ𝑡ሻ after the impact as a function of time. 

 

Question 3. Find the condition of the impulse 𝑃 for the axisymmetric object to climb the step 

of height 𝐻 ሺ0 ൑ 𝐻 ൏ 𝑎ሻ shown in Figure 1. Here, the axisymmetric object starts rolling 

without slipping by the time it reaches the step, there is no friction between the axisymmetric 

object and the horizontal plane after that, and the axisymmetric object does not slip and does 

not bounce at the corner of the step. 

 
Figure 1 
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